
Unpacking Packers 
- So What? Does it 

ever get easier? No.
Nicole Fishbein



About Me
● Senior Security Researcher and Malware 

Analyst @ Intezer.
● Researcher of embedded devices for 5 

years. 
● Presented at BlackHat USA, BlackHat 

EU, FIRSTCon Dublin, LABScon, 
BSidesSF, RECON and more.



Agenda

1. Crypters, loaders and packers
2. Why crypters are used by 

malware developers?
3. How do we unpack packed* 

files?
a. Static analysis
b. Emulator
c. Sandbox

4. Can we solve it with AI?
5. Conclusions and reflections



Crypters, Loaders 
and Packers 01



Memory Analysis Memory AnalysisMemory Analysis

• Crypters are tools used to encrypt 
or obfuscate code to avoid 
detection by antivirus software. 

• Examples:
1. CyberSeal - Known for 

encrypting executable files to 
evade antivirus detection.

2. Armadillo Crypter - Uses 
multiple layers of encryption 
for payload protection.

🔒Crypters

• Loaders are programs designed to 
load and execute payloads into 
memory, often used as the first 
stage of an attack to bypass 
security controls.

• Examples:

1. IcedID Loader – Primarily 
used to load banking Trojans.

2. Smoke Loader - A lightweight 
tool to inject and execute malware 
in a target system.

🚀 Loaders

• Packers compress executable files 
to make them harder to detect 
and reverse-engineer, often used 
to hide malware’s true size and 
structure.

• Examples:

1. UPX (Ultimate Packer for 
eXecutables) - Popular for 
compressing executable files.

2. ASPack - Often used to 
compress and obfuscate 
executables.

📦 Packers

Crypters, Loaders, Packers…
Let’s define them



Why Do Malware 
Developers Use 
Crypters, Loaders, 
and Packers?

02



Crypters in Malware Distribution

● To make the analysis more complicated
● To evade detection
● To prolong malware lifespan
● To make attacks modular



Banking Trojans & Info-Stealers
Emotet, TrickBot, Dridex.
Use crypters and packers to stay 
stealthy during credential 
harvesting.

RATs Remote Access Trojans)
NjRAT, QuasarRAT.
Often delivered by loaders that 
decrypt the RAT in memory.

Crypters in Malware Distribution

Ransomware
Conti, LockBit.
Use packers and loaders to bypass 
defenses and ensure initial 
execution.

Initial Access Brokers
These are groups that specialize in 
gaining entry (often using loaders) 
and then sell access to 
ransomware operators.



Stats?



How do we Unpack 
Files? 03





The Battlefield

Static analysis
Emulators
Sandbox

Packers, loaders, crypters

Threat ActorsDefenders

Detect and evade analysis

Detect the attempt to evade 
detection!!



Static Extraction

Writing scripts or pieces of code to extract 
the payload using the knowledge we 
gained in the RE process



Brute Ratel?

● C2 framework similar to Cobalt Strike
● Appeared in underground forums in late 2022
● Cracked version of the framework



Analyzing Brute Ratel

● Bager = Beacon
● GUI  Commander
● Cracked version enables defenders build a badger payload
● Configuration and payload - similar to Cobalt Strike



● A series of pushes to registers, followed by stack strings
● Build a Base64 string and an encrypted badger payload

Analyzing Brute Ratel - The Loader



Analyzing Brute Ratel - The Loader

Configuration
RC4

Payload

RC4
Base64



Decoded Configuration



The Structure of the Configuration



Static Extraction Script



Static Extraction Script







Static Extractor + 
Config Parser



Final Result of the Script



What Did we Learn?

● Now we have everything we need- we possess 
a script to decode both the payload and its 
configuration, and we understand the 
configuration structure, enabling us to hunt for 
and detect this framework.

● We had to reverse engineer the loader and part 
of the framework (manually) in order to be able 
to automate the extraction



Emulators

Leveraging CPU emulation frameworks to run only 
the relevant portions of the malware in an emulated 
environment. 

This allows researchers to skip over anti-debugging 
or anti-VM checks while focusing on the decryption 
or unpacking routines.



Emulators

- Emulates CPU instructions and memory 
operations.

- Designed for fine-grained control of code 
execution (e.g., shellcode, unpacking 
loops).

- Supports multiple architectures (x86, ARM, 
MIPS, etc.)

- Ideal for emulating small code routines, 
such as malware decryption loops.

- Does not emulate OS-level APIs, 
filesystems, or syscalls.

- Builds on Unicorn.
- Simulate full OS-level execution 

environments Windows, Linux, etc.).
- Allows analysts to run malware as if itʼs on a 

real system without using a full VM.
- Extensible via Python for automation and 

customization.
- Ideal for analyzing full malware loaders



Original Blog Post



TA505 Overview

● Financially motivated, Russian affiliated cybercrime group active since at least 2014.
● Known for large-scale, global cyber-attacks targeting various sectors.
● Specializes in deploying banking Trojans, ransomware, and remote access tools 

RATs.
• Dridex (banking Trojan)
• Locky and Clop (ransomware)
• FlawedAmmyy, SDBbot, and other RATs

● Adapts quickly to detection, frequently changes tools, techniques, and 
infrastructure.



Slowing Down Emulation - Dummy Functions



Anti Emulation - GetLastError()

● Malware calls Windows APIs intentionally with invalid 
parameters

● Immediately checks return value using GetLastError()
● Expected error code (e.g., ERROR_INVALID_HANDLE) must be 

returned
● If the error code is missing or incorrect, malware detects:

○ Emulator or sandbox environment
○ Incomplete Windows API emulation

● Based on detection, malware may:
○ Exit silently
○ Skip payload unpacking
○ Execute fake code paths to mislead analysis

● Emulators like Qiling can hook APIs to simulate expected errors 
and bypass detection



Anti Emulation - GetLastError()



Second Stage Loader - Anti Emulation 



Third Stage Loader - Obfuscation 



The Goals of the Emulation

● Detect and bypass anti-emulation checks to allow execution of 
the packer stub

● Track dynamically allocated memory regions (recording address 
and size)

● Dump the unpacked PE payload at the right moment (e.g., just 
before VirtualFree() is called)

Source Code: unpack-ta505packer-qiling(GitHub)



Emulation - Bypassing Loops



Emulation - Bypassing the Error Check



Emulation - Getting the Payload from the Allocated 
Memory



Afterthoughts

- Emulation requires a good understanding of 
the malware (anti-emulation and 
anti-analysis)

- Requires low-level programming skills



Sandbox

We all know them, we all love them…

Did you know that sandboxs can also be 
painful to maintain?



About Sandboxs

● Cuckoo - open-source sandbox projects
● Cape - fork of Cuckoo

○ Focused on automated unpacking and config 
extraction from malware

● Monitoring = DLL injections + hooks
○ Malware makes a call to a monitored API call → 

hooked function is invoked → log the call → call the 
actual API function

But, what if there is a bug in the hook? 



Capemon and Cuckoomon 
User-mode DLL monitor injected into target process during sandboxing
Intercepts and logs Windows API calls and runtime behavior
How It Works

• Injected early via remote thread or modified entry point
• Installs hooks into key API functions (e.g., CreateFile, CreateProcess)

Monitored Activities
• File, registry, memory, and process operations
• Network activity
• DLL loads and code injection attempts
• Suspicious behavior like persistence or API misuse



Stagless Loader
for Cobalt Strike
Beacon



Stagless Cobalt Strike Beacon



The Issue





Afterthoughts

- This is an example of how our tool can fail 
us

- Finding the issue can be complicated
- Needle in a haystack



The Struggles of Maintaining a Sandbox Environment

● Constantly evolving anti-sandbox techniques used by malware
● Difficult to replicate a realistic OS and user environment
● Use of delays and stealth tactics to evade short executions
● High resource consumption CPU, memory, storage)
● Malware may require specific triggers (user input, time, 

network) to activate
● Scalability issues when analyzing large volumes of samples
● Incomplete API and driver coverage can break analysis or reveal 

the sandbox



Antisandbox shenanigans



Anti-Sandbox Shenanigans
The malware includes several sandbox evasion checks:

1. CPU Core Count: Terminates if the system has fewer than 3 CPU cores.
2. Process Blacklist: Checks for specific processes associated with analysis tools.
3. Running Processes Count: Exits if fewer than 28 processes are currently running.
4. %TEMP% Folder Check: Terminates if there are fewer than 3 files in the %TEMP% directory.
5. Downloads Folder Check: Exits if there are fewer than 3 files in the Downloads folder.
6. Disk Size Check: Verifies that no disk is smaller than 50 GB.
7. System Uptime: Terminates if the system has been up for less than 10 minutes.
8. RAM Size Check: Requires at least 1 GB of RAM.
9. File Presence Check: If the file adobe.url exists in %TEMP%, the malware assumes it has already 

run and exits.
10. Loop Skipping Check: Detects if the environment skips over a long loop, likely indicating an 

emulator or analysis environment.







And the Result..



Afterthoughts

- Itʼs a constant fight between the defenders 
and the malware developers

- Some fixes are easier than others
- Itʼs a team effort



● A request to investigate a suspicious 
file

● Get results ASAP  24 hours
● Identify the final payload
● Understand why the sandbox failed and 

deploy fixes
● We name it Bubble Loader

Babble Babble



Itʼs Big!



And Then..



Effort to Hamper Analysis by Confusing the Analyst



Effort to Hamper 
Analysis by 
Confusing the 
Analyst



Metamorphic Loader



Dynamic API Resolution - Shellcode Loading



Anti-Emulation



Bubble - AntiSandboxing/Analysis

● The loader checks installed graphics 
adapters to detect sandbox 
environments.

● It uses `dxgi.dll`, part of `DirectX`, to 
interface with the systemʼs graphics 
hardware.

● By calling `CreateDXGIFactory`, it obtains 
a factory object to enumerate GPU 
details.

● It retrieves adapter descriptions via 
`EnumAdapters` and `GetDesc`, exposing 
signs of virtualization.



Looking for Graphic Adapters



VDLL





What About AI?

We already can (semi) successfully use LLMs in the 
reverse engineering process
Can we use LLMs to unpack and decrypt payloads?





AIʼs Response



And Then it Got Stuck…



AI Canʼt Solve This Problem

● Constant code changes force AI 
models to relearn patterns, leading to 
missed detections and false positives.

● Junk instructions trick AI into 
misinterpreting harmless actions as 
malicious, hiding the malwareʼs true 
behavior.

● Fake variables overwhelm data flow 
analysis, making it hard to separate 
meaningful data from noise.

● High token volume increases the 
computational cost of analysis, 
weaponizing complexity against AI 
detection.



Conclusion

● It is hard to unpack and decrypt malware (in some cases)
○ Loaders and packers are continuously evolving

● In most of the cases to unpack malware you first need to 
reverse engineer the sample

● People see only the final clean and ready products and want 
them to work smoothly for ANY malware sample

● Itʼs a never ending battle and it will get more and more technical



Thank You!!

Questions?

@nicolefishbein.bsky.social
NicoleFishi19
Nicole Fishbein

fishy19


