Unifying Security Tools
with OCSF and 60 lines of code
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Nice to meet you

Spyros Gasteratos

OSS Dev — SecEng
Founder / CEO Smithy
Creator of OpenCRE.orqg

OWASP volunteer
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https://smithy.security
http://opencre.org

Itinerary: a tale of discovery and invention

+—RProblem-statement
Unifying Technologies: Sarif, OCSF, Orchestration
Our Solution:
How to build a component
Demo

Pitfalls

Next steps

Closing remarks
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SARI F (Static Analysis Results Interchange Format)

Open Source Standard for reporting SAST
vulnerability findings

Pros:
o support from a lot of SAST vendors — Github

o Human and machine readable
o JSON Schema

Cons:
o support MOSTLY by SAST
vendors shallow details
o weak schemas
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OCSF (Open Cybersecurity Schema Framework)

e Security agnostic schemas

e Pros:
o  SAST++++
o  Schemas AND tools (JSON, Protobuf)
o  More expressive than SARIF
o Extensible
e Cons:

o  Designed by committee
o  Tools STILL don’t map the same way
o  Steep learning curve
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Challenges with orchestration

e Running security tools reliably not
trivial

e Leveraging common knowledge is
hard

e Not straightforward feedback loops
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Taming the chaos

Standardise tools execution and
implementation

Automatic instrumentation:

o metrics
o logs
o traces

o  panic handling
@)

Not impacting on production Cl pipelines
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Orchestration

Tools can
e Report in OCSF format - Data Lake
e Run in the same and predictable ways - Reliability
e Be built in the same way with an SDK - Maintainability/Adoption
e Be orchestrated locally, on Cl, on Premises or on SAAS



: SDK for OCSF and Orchestration

e SDK + workflow engine for security tooling

e Fetch Artifacts, Scan, Enrich, Filter and Report
functionality

e Run locally, on Cl or wherever you can
orchestrate containers
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Components

What do they do?

1. Wrap security tooling
2. Execute and parse results
3. Parse results to OCSF

4. Store

vulnerable-repository

Lom

Scan T
trufflehog-component

Parse and Store

(OCSF)

Vulns DB
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Workflows

Define component
execution order and
configuration

Configurable via yaml or
CLI
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Component Configuration

name: gosec-parser
description: "Parses gosec findings into OCSF format"
type: scanner
steps:
- name: scanner
image: "docker.io/securego/gosec:2.15.0"
executable: >
-fmt=sarif
-no-fatl
-out=/workspace/repos/gosec. json
/workspace/repos/govwa
- name: parser

image: "ghcr.io/smithy-security/images/components/scanners/gosec:latest"
env_vars:
GOSEC_RAW_OUT_FILE_PATH: repos/gosec.json
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Workflow Configuration

description: "GoSec sample pipeline”
name: "gosec-pipeline"

components:

component: "ghcr.io/smithy-security/manifests/components/target/git-cloner:v0.1.0"

component: "ghcr.io/smithy-security/manifests/components/scanner/gosec-parser:v1.0.0"
component: "ghcr.io/smithy-security/manifests/components/enricher/custom-annotation:v1.2.0"

component: "ghcr.io/smithy-security/manifests/components/reporter/json-logger:v2.0.0"
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SDK

Go SDK to write components
Plug and play

Focus on writing business logic
Speaks OCSF

Reliability, Storage and Monitoring instrumentation
capabilities built in
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Component Specification

type Enricher interface {

Annotate(ctx context.Context, findings []VulnerabilityFinding) ([]VulnerabilityFinding, error)
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Example Implementation

type esReporter struct {
esClient *elasticsearch.Client

func (e esReporter) Report(
ctx context.Context,
findings []VulnerabilityFinding,
) error {
logger := component.
LoggerFromContext(ctx).
With(

slog.Int("num_findings", len(findings)),

for _, finding := range findings {

b, err := protojson.Marshal(finding.Finding)
if err !'= nil {
return errors.Errorf("could not json marshal finding: Sw", err)

e.esClient.Index("findings", bytes.NewBuffer(b))

return nil




Orchestration
Locally

smithyctl executes workflows
with a simple execution
engine

Or wherever you want

smithyctl is a single binary
and can run anywhere:

- ClI
- Container orchestrators
- P77
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Demo
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Pitfalls

e Not using open standards and SDKs

e Raw Data dumping in human - focused fields

e Not being strict about original tool info — less is more

e Relying only on Al mappings
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Next Steps

e SDK V1 - helper methods, shortcuts

e  Community registry — publish, discover and download
components and workflows

e SDK V2 — more observability, support more of OCSF natively
e More composable workflows
e Native LLM bindings

e And many more
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To recap

Dirty scripts don’t scale

Interoperability: The only way to do security is Open Standards
Short Feedback loops: Fast and flexible integrations

Smithy is Open Source, you can find it at:
https://github.com/smithy-security/smithy
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Thank You

You can find the slides here:
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