Unifying Security Tools
with OCSF and 60 lines of code

Dirty scripts to the
rescue

Vulnerability
Management

hw®

N®.
§\ e gl
IR

Orchestration
chasm

- ﬂ"'iﬁxr et
|
’ e l::i\\.a L}

\ \"“\\
.¢-'\ [‘ ; !‘

“ “« l
o

SAST

|
|

L")
ﬁ"l») B

\\..[W\\\._.._A&Q‘u ‘

" —",‘t) = y
s

i —

o

Nice to meet you

Spyros Gasteratos

OSS Dev — SecEng
Founder / CEO Smithy
Creator of OpenCRE.orqg

OWASP volunteer

&

https://smithy.security
http://opencre.org

Itinerary: a tale of discovery and invention

+—RProblem-statement
Unifying Technologies: Sarif, OCSF, Orchestration
Our Solution:
How to build a component
Demo

Pitfalls

Next steps

Closing remarks

©®NOOR WD

SARI F (Static Analysis Results Interchange Format)

Open Source Standard for reporting SAST
vulnerability findings

Pros:
o support from a lot of SAST vendors — Github

o Human and machine readable
o JSON Schema

Cons:
o support MOSTLY by SAST
vendors shallow details
o weak schemas

&

OCSF (Open Cybersecurity Schema Framework)

e Security agnostic schemas

e Pros:
o SAST++++
o Schemas AND tools (JSON, Protobuf)
o More expressive than SARIF
o Extensible
e Cons:

o Designed by committee
o Tools STILL don’t map the same way
o Steep learning curve

&

Open
Cybersecurity

Schema
Framework

Y30

Extensions

Ouinux [y
V30

Clwindows (2)
vi30

Profiles

Octous

LI Container
O Data Classification

[Date/Time

[Host

Linux Users

Load Balancer

Network Proxy
Olosint

O Security Control

OCSF Schema

ach aligned with a s

File System Actlvity (1001 Security Finding (2001) Web Resources Activity (6001) Remediation Activity (7001

Kermel Extension Activity (1002) Vulnerabilty Finding (2002) Application Lifecycle (6002) File Remediation Activity (7002)
Kernel Activity (1003 Compliance Find o Pracess Remediation Activity (7003)
Memory Activity (1004) Detect! e Activity (6004) Notwork Remediation Activity [7004)
Scheduled Job Activity (1006) Data Sec + File Query (S007) File Hosting Activity (6008)

Process Activity (10

Folder Query (5008
Admin Group Query (S008)
3 Job Query (S010)
Network File Activity (401 Module Query (SO
Email File Activity (40T) Network Connection Ques
Email URL Activity (4012) Networks Query (SO13)
NTP Activity (4013) Per
Tunnel Activity (4014)

Scan Activity (6007)

Event Log Activity (1008) FTP Activity (4008)

Email Activity [

5012)

al Device Query (S01

Process Query (SO1S)

User Session Query (50T7)
User Query (5018)
Device Config State Change (501)

Software Inventory Info (5020)

Challenges with orchestration

e Running security tools reliably not
trivial

e Leveraging common knowledge is
hard

e Not straightforward feedback loops

&

Taming the chaos

Standardise tools execution and
implementation

Automatic instrumentation:

o metrics
o logs
o traces

o panic handling
@)

Not impacting on production Cl pipelines

&

Orchestration

Tools can
e Report in OCSF format - Data Lake
e Run in the same and predictable ways - Reliability
e Be built in the same way with an SDK - Maintainability/Adoption
e Be orchestrated locally, on Cl, on Premises or on SAAS

: SDK for OCSF and Orchestration

e SDK + workflow engine for security tooling

e Fetch Artifacts, Scan, Enrich, Filter and Report
functionality

e Run locally, on Cl or wherever you can
orchestrate containers

&

Components

What do they do?

1. Wrap security tooling
2. Execute and parse results
3. Parse results to OCSF

4. Store

vulnerable-repository

Lom

Scan T
trufflehog-component

Parse and Store

(OCSF)

Vulns DB

01©)
=i

&

Workflows

Define component
execution order and
configuration

Configurable via yaml or
CLI

&

Component Configuration

name: gosec-parser
description: "Parses gosec findings into OCSF format"
type: scanner
steps:
- name: scanner
image: "docker.io/securego/gosec:2.15.0"
executable: >
-fmt=sarif
-no-fatl
-out=/workspace/repos/gosec. json
/workspace/repos/govwa
- name: parser

image: "ghcr.io/smithy-security/images/components/scanners/gosec:latest"
env_vars:
GOSEC_RAW_OUT_FILE_PATH: repos/gosec.json

&

Workflow Configuration

description: "GoSec sample pipeline”
name: "gosec-pipeline"

components:

component: "ghcr.io/smithy-security/manifests/components/target/git-cloner:v0.1.0"

component: "ghcr.io/smithy-security/manifests/components/scanner/gosec-parser:v1.0.0"
component: "ghcr.io/smithy-security/manifests/components/enricher/custom-annotation:v1.2.0"

component: "ghcr.io/smithy-security/manifests/components/reporter/json-logger:v2.0.0"

&

SDK

Go SDK to write components
Plug and play

Focus on writing business logic
Speaks OCSF

Reliability, Storage and Monitoring instrumentation
capabilities built in

&

Component Specification

type Enricher interface {

Annotate(ctx context.Context, findings []VulnerabilityFinding) ([]VulnerabilityFinding, error)

&

Example Implementation

type esReporter struct {
esClient *elasticsearch.Client

func (e esReporter) Report(
ctx context.Context,
findings []VulnerabilityFinding,
) error {
logger := component.
LoggerFromContext(ctx).
With(

slog.Int("num_findings", len(findings)),

for _, finding := range findings {

b, err := protojson.Marshal(finding.Finding)
if err !'= nil {
return errors.Errorf("could not json marshal finding: Sw", err)

e.esClient.Index("findings", bytes.NewBuffer(b))

return nil

Orchestration
Locally

smithyctl executes workflows
with a simple execution
engine

Or wherever you want

smithyctl is a single binary
and can run anywhere:

- ClI
- Container orchestrators
- P77

&

Demo

&

B

elastic
= @ Q Filter your data using KQL syntax

Findings per day

Dashboards ~ Editingdemo® v

B2 Add from library 2 Controls

6,000
5,000
4,000

3,000

b,

2024-11-25 2024-11-27 20241129 20241201 2024-12-03 2024-12-05 2024-12:07 2024-12-09 2024-12-11 20241213 20241215 202641217 20241219 2024-12-21 20241223

Without Smithy

scan_start_time per day

vs y wi vs y (copy)

6,000

5,000

4,000

Semgrep Only

e o o 234

25t 2nd
November 2024 IDecember 2024

scan_start_time per day

o0
® Without Smithy
® Smithy
® Semgrep Only
® Smithy
S

Unique per day

3,000

2,000

Smithy Findings.

25t 26t 27th
November 2024

Top CVESs you care about

CVE-2024-27308

CVE-2024-36051

Top & values of cve.keyword

CVE-2024-45338

28th

15 l2na 3
December 2024

rm

th

Unsaved changes Settings Share Saveas Switchtoview mode Reset m

E v Nov 25,2024 @ 23:53:44.674 > Dec 24, 2024 @ 05:19:01.615 G Refresh

an lom tom G2 dah wm s (B v 8h ten 201 21st 22nd 23

‘scan_start_time per day

10

Maximum of cvss.

Pitfalls

e Not using open standards and SDKs

e Raw Data dumping in human - focused fields

e Not being strict about original tool info — less is more

e Relying only on Al mappings

&

Next Steps

e SDK V1 - helper methods, shortcuts

e Community registry — publish, discover and download
components and workflows

e SDK V2 — more observability, support more of OCSF natively
e More composable workflows
e Native LLM bindings

e And many more

&

To recap

Dirty scripts don’t scale

Interoperability: The only way to do security is Open Standards
Short Feedback loops: Fast and flexible integrations

Smithy is Open Source, you can find it at:
https://github.com/smithy-security/smithy

[m] ¢

&

Thank You

You can find the slides here:

S

