
Unifying Security Tools
with OCSF and 60 lines of code

Dirty scripts to the
rescue

Vulnerability
Management SAST

Orchestration
chasm

Nice to meet you

Spyros Gasteratos

● OSS Dev – SecEng
● Founder / CEO Smithy
● Creator of OpenCRE.org
● OWASP volunteer

https://smithy.security
http://opencre.org

Itinerary: a tale of discovery and invention
1. Problem statement
2. Unifying Technologies: Sarif, OCSF, Orchestration
3. Our Solution:
4. How to build a component
5. Demo
6. Pitfalls
7. Next steps
8. Closing remarks

SARIF (Static Analysis Results Interchange Format)

● Open Source Standard for reporting SAST
vulnerability findings

● Pros:
○ support from a lot of SAST vendors – Github
○ Human and machine readable
○ JSON Schema

● Cons:
○ support MOSTLY by SAST

vendors shallow details
○ weak schemas

OCSF (Open Cybersecurity Schema Framework)
● Security agnostic schemas

● Pros:
○ SAST++++
○ Schemas AND tools (JSON, Protobuf)
○ More expressive than SARIF
○ Extensible

● Cons:
○ Designed by committee
○ Tools STILL don’t map the same way
○ Steep learning curve

OCSF

20+ categories/types!

Challenges with orchestration

● Running security tools reliably not
trivial

● Leveraging common knowledge is
hard

● Not straightforward feedback loops

Taming the chaos
● Standardise tools execution and

implementation

● Automatic instrumentation:
○ metrics
○ logs
○ traces
○ panic handling
○ …

● Not impacting on production CI pipelines

Orchestration
Tools can

● Report in OCSF format - Data Lake
● Run in the same and predictable ways - Reliability
● Be built in the same way with an SDK - Maintainability/Adoption
● Be orchestrated locally, on CI, on Premises or on SAAS

 : SDK for OCSF and Orchestration

● SDK + workflow engine for security tooling

● Fetch Artifacts, Scan, Enrich, Filter and Report
functionality

● Run locally, on CI or wherever you can
orchestrate containers

Components

What do they do?

1. Wrap security tooling
2. Execute and parse results
3. Parse results to OCSF
4. Store

Workflows

● Define component
execution order and
configuration

● Configurable via yaml or
CLI

Component Configuration

Workflow Configuration

SDK

● Go SDK to write components

● Plug and play

● Focus on writing business logic

● Speaks OCSF

● Reliability, Storage and Monitoring instrumentation
capabilities built in

Component Specification

Example Implementation

Orchestration
Locally

smithyctl executes workflows
with a simple execution
engine

Or wherever you want

smithyctl is a single binary
and can run anywhere:

- CI
- Container orchestrators
- ???

Demo

Pitfalls

● Not using open standards and SDKs

● Raw Data dumping in human - focused fields

● Not being strict about original tool info – less is more

● Relying only on AI mappings

Next Steps
● SDK V1 – helper methods, shortcuts

● Community registry – publish, discover and download
components and workflows

● SDK V2 – more observability, support more of OCSF natively

● More composable workflows

● Native LLM bindings

● And many more

To recap

● Dirty scripts don’t scale
● Interoperability: The only way to do security is Open Standards
● Short Feedback loops: Fast and flexible integrations
● Smithy is Open Source, you can find it at:

https://github.com/smithy-security/smithy

Thank You

You can find the slides here:

