
From Unrestricted Uploads to
Security Nightmares
Preventing and Mitigating File Upload Vulnerabilities

Presented by: Sewar Khalifeh | Secure by Design Consultant @CLOUDYRION

Date: 19th June 2025

Event: BSides Luxembourg 2025

Today's Agenda

Understanding File Upload Vulnerabilities

E-Government ID Application use case and OWASP guidelines

Practical Attack Demonstrations

Extension bypassing, DoS via zip bombs, and metadata exfiltration

Content Disarm and Reconstruction (CDR)

How CDR works and mitigates file upload vulnerabilities

Integration Strategies & Security Recommendations

CDR vs traditional approaches, implementation modes, and key takeaways

Understanding File Upload Vulnerabilities

Definition

Unrestricted file uploads allow
attackers to upload malicious
files. Simple checks are easily
bypassed.

OWASP Status

Consistently flagged as critical
in the OWASP Top 10. Falls under
Injection and Security
Misconfiguration categories.

Primary Risk

Remote code execution is the
most severe outcome. Attackers
can gain unauthorized access to
systems.

Our File Upload Usecase (E-Government ID App)

Government Mobile
Verification

Citizens upload identification
documents through an official
government app for verification and
access to services.

Critical Security Implications

Compromised upload security can
lead to identity theft, sensitive data
exposure, and fraudulent document
submission.

High-Value Target

Government identity systems are
prime targets for attackers seeking
to exploit upload vulnerabilities for
maximum impact.

Practical Examples on Unrestricted File Upload
Vulnerability

Tools Used In Our Scenarios:

Replit: Used to deploy our web simulation environment for demonstrating vulnerable file upload implementations

ClamAV: signature-based, open-source antivirus scanner

Python OpenCDR: Python-based Content Disarm and Reconstruction library for testing mitigation techniques

Exiftool: Reading metadata from files uploaded to our server.

Attack 1: Bypassing Simple File Restrictions

1 Disguise the Payload

Attacker renames shell.php to shell.php.jpg, this exploits simple validation checks.

2 Upload Succeeds

Server checks pass due to .jpg extension. The file is stored on the target system.

3 Exploitation

Server misconfiguration executes PHP code despite the deceptive extension. Attacker gains control.

Takeaway: File-extension or MIME-type checks alone are insufficient protection against determined attackers.

Simulation Output

Attack 2: Denial-of-Service via Malicious File Upload

Prepare Attack

Attacker creates corrupt .zip bomb (expansion: 42KB →
4.5TB exceeds safe processing limits)

Upload File

Malicious file submitted to vulnerable application

Server Processing

Application attempts to process the malformed content

Service Disruption

Server becomes unresponsive or crashes due to resource
exhaustion

Takeaway: Lack of file content validation allows easy exploitation of server resources.

Zip Bomb Attack

Worth Mentioning: Sensitive Information Disclosure
via Metadata

Victim uploads innocent-looking photo

The image appears normal but contains embedded
metadata.

Attacker extracts metadata

Running: exiftool company_photo.jpg reveals hidden
information.

Sensitive data exposed

GPSLatitude: 37deg46'30.00"N
GPSLongitude: 122deg25'9.00"W
UserComment: \fileserver01\shares\confidential
Keywords: confidential,board-meeting,Q4-results

Takeaway: Uploaded files may leak hidden sensitive data without user awareness.

Exiftool Result On Image Uploaded on Company
Website

Introduction to Content Disarm and
Reconstruction (CDR)

How CDR Works?

File Analysis

Original file is thoroughly examined

Content Extraction

Safe content is identified and isolated

Sanitization

Potentially malicious elements are removed

Reconstruction

Clean file is rebuilt from scratch

CDR analyzes files, extracts safe content, and rebuilds files completely clean. This approach provides proactive protection compared to traditional

methods.

CDR Mitigating File Upload Vulnerabilities

CDR Against Attack Scenario 1 (Bypassing Simple File
Restrictions)

Content Disarm and Reconstruction effectively neutralizes file extension bypass attacks through complete file transformation.

1

Complete File
Deconstruction

CDR ignores file extensions
entirely, breaking down files
to their binary components
for analysis.

2

Malicious Code
Detection

Hidden PHP code is
identified regardless of file
extension or MIME type
disguise.

3

Total File Rebuilding

Only verified safe content
gets reconstructed into a
new, clean file.

4

Format Enforcement

Output strictly conforms to
the intended file type,
eliminating executable
code.

CDR Result on Bypassing Extension Checks

CDR Against Attack
Scenario 2 (DoS via Corrupt
Files)

Attack Scenario

Corrupted .zip bomb designed to crash file processing
systems upon upload.

With CDR

Corrupted .zip sanitized and rebuilt as clean compressed file
(42Kb). Application processes it normally.

CDR prevents downtime and resource exhaustion by proactively
rebuilding files rather than just scanning them.

CDR Result on Zip Bomb

CDR Against Sensitive Information Disclosure via
Metadata

PyCDR performs comprehensive metadata analysis and sanitization, removing all sensitive
information while preserving the core image content.

CDR Result on Sensitive Metadata in an Image

Why File Upload Security Matters in E-
Government App Use Case?

National Security

Malicious file uploads can
target critical government
infrastructure.

Identity Theft

Compromised personal
identifiers enable large-scale
fraud against citizens.

Breakdown of Trust

Data breaches significantly
damage public confidence in
government systems.

How CDR provides Protection to Our App

Proactive Defense

Reconstructs files completely rather
than just scanning for known threats.

Metadata Sanitization

Removes hidden PII from document
properties before storage.

Zero-Day Protection

Eliminates unknown threats through
complete file regeneration.

Traditional Malware Scanning VS CDR

Single Antivirus Scanning Limitations

Signature Dependence

Relies on known malware patterns. New threats easily
bypass detection.

Detection Lag

Zero-day exploits remain undetected until signatures are
updated.

Multi-AV Scanning Approach

Improved Detection

Multiple engines catch more
threats than single AV

Still Signature-Based

Remains vulnerable to zero-
day and obfuscated attacks

Performance Cost

Significantly slower
processing and higher
resource usage

Even with multiple engines, sophisticated or zero-day threats often bypass detection.

Sandboxing & Behavioral Analysis

Dynamic Analysis

Executes files in isolated environments to observe behavior. Catches some
complex threats.

Time Intensive

Significantly delays file processing. Creates user experience issues in real-
time systems.

Resource Heavy

Requires substantial computing power. Expensive to implement and maintain

at scale.

Blind Spots

Misses certain corrupted files. Some malware detects sandboxes and
remains dormant.

Comparative Security Controls Summary

Control Method Proactivity Speed Zero-day Prevention

Single AV ❌ Reactive ✅ Fast ❌ No

Multi-AV ❌ Reactive ⚠ Medium ❌ No

Sandboxing ⚠ Semi-Proactive ❌ Slow ✅ Good (but limited)

CDR ✅ Proactive ✅ Fast ✅ Excellent

Conclusion: CDR provides the most comprehensive protection while maintaining performance. It addresses gaps left
by traditional approaches.

CDR Pitfalls to Consider

File Fidelity Loss

Sanitized files may lose advanced
features like macros, embedded
scripts, or complex formatting.

User Acceptance

Users may resist sanitized files due
to perceived data loss or usability
issues.

Legitimate Rejections

Aggressive sanitization could block
legitimate documents, impacting
business workflows.

File Protection Integration Modes

High Level Design of Possible Modes of Integration to Secure File Uploads

Points of Integration and Architecture Review

Gateway Integration

Deploys scanning at intermediary points
between applications and external
environments.

Utilizes REST APIs or ICAP endpoints

Protects multiple applications
simultaneously

Ideal for closed-source application
protection

Application Integration

Embeds scanning directly within
applications for real-time protection.

Uses SDKs or REST APIs

Provides granular workflow control

Seamless integration with application
logic

Storage Integration

Integrates scanning into data storage
layer (S3, Azure Blob).

Inspects files during upload/download

Leverages storage integration APIs

Ensures only sanitized files enter
storage

Selecting the right integration approach depends on your architecture, security requirements, and performance needs.

Integration Methods Key takeaways

These integration methods offer varying levels of flexibility and control, depending on the

specific requirements of the application or system.

Gateway-level integration offers a scalable solution for protecting multiple applications.

Application-level integration provides the most granular control.

Storage-level integration is particularly useful for protecting data at rest.

OWASP-Aligned Recommendations
Immediate Actions and Next Steps

1 Perimeter & Network Controls

• Enforce WAF rules for uploads
• Inline malware scanning on ingress

2 App-Layer Validation & Sanitization

• Strict allow-lists (extensions, magic-bytes,
size/schema)

3 Defense-in-Depth Processing

• Chain CDR + signature & behavioural malware
scanners
• Store uploads off web-root.

4 Monitoring & Testing

• Integrate secure-coding standards (OWASP Top
10)
• SIEM-backed logging & alerts on anomalous
uploads
• Quarterly/Semi-Annually red-team exercises

Key Takeaways

Real-Life Impact

Unrestricted file uploads enable code execution, denial-of-service, and
sensitive data leakage risks.

CDR is Proactive

CDR neutralizes threats by rebuilding files to specification, complementing
traditional security approaches.

Defense in Depth

Layer multiple security controls within an OWASP-compliant framework for

comprehensive protection.

Integration Flexibility

Implement security controls at gateway, application, or storage levels based
on your specific architecture.

Resources
Resources for this presentation are available at: o

OWASP Unrestricted File Upload.

Gartner: Quick Answer: How to Protect Web Applications Against Malicious File Uploads .

CWE-434: Unrestricted Upload of File with Dangerous Typ e.

GlassWall Secure File Uploads Report.

Exploitation of Accellion File Transfer Appliance.

30,000 WordPress Sites Exposed to Exploitation via File Upload Vulnerability.

https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://www.gartner.com/en/documents/4231699
https://cwe.mitre.org/data/definitions/434.html
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RW1dYXo#:~:text=File%20upload%20protection%20from%20Glasswall,their%20manufacturer%27s%20known%2Dgood%20specification.
https://gbhackers.com/30000-wordpress-sites-exposed/

Thank You & Q&A
Sewar Khalifeh

Contact: s.khalifeh@cloudyrion.com

Medium Blog:

Medium
Sewar Khalifeh – Medium
Read writing from Sewar Khalifeh on Medium. Technology
evolves, so do the threats. I ensure staying a step ahead of…

https://medium.com/@sewarkh

